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Abstract Introduction

This paper examinesthe need for complex, adaptive The Strategic Defense System is archetyp-
solutions to certaintypeso! complexproblemstypifie:l ical of a certain class of complex problems
by the Strategic Defense Systemand NASA's Space that are becoming increasingly importantto
Station and Mars Rover. Sincenaturalsystems have
evolved with capabilitiesof intelligent behavior in defense and industry as the 21st century
complex,dynamicsituations,it is proposedthat bio- nears. Additional examples of such prob-
logical principles be identified and abstracted for lems include optimized controlof nuclear
application to certain problems now facing industry, power plant clusters, design of new and
defense, and spaceexploration, specificmolecularmedicines,managingthe
Two classes of artificial neural networks are pre- space station, and controlling unmanned
sented--a non-adaptivenetworkusedas a genetically pl_,.netary exploration vehicles. The corn-
determined"retina,"anda frequency-coded network plexity of these and similar prob;ems raises
as an adaptive"brain." The role of a specific envi- serious questions concerning the usual
ronment coupledwith a systemof artificialneural net. methodology of hardware and softwarede-
works havingsimulatedsensorsand effectors is seen sign and makes impossible demands on
as an ecosystem. Evolution of synthetic organisms
within this ecosystemprovidesa powerfuloptimization current methods of reliability testing and
methodologyfor creatingintelligentsystems able to system verification. The presentapproach
functionsuccessfullyinanydesiredenvironment, in treating complex systems is to create a

simulationpresumedto be representativeof
A complexsoftwaresysteminvolvinga simulationof an the actual system in its essential details.
environment and a programdesigned to cope with Studying a simulation is thought to be a
that environmentarepresented. Relianceon adaptive practicalalternative to reality when issuesofsystems, as found in nature, is only part of the pro-
posedanswer,thoughan essentialone. The second complexity,prohibitiveexpense,and impos-
part of the proposedmethodmakes use of an a_:li- sibility of adequate testingare concerned.
tional biological metaphor---thatof naturalselection--

to solvethedynamicoptimizationproblemsthat every The need for an accurately detailed
intelligentsystemeventuallyfaces. A third area of description of the physical systemcompo-
concernindevelopingan adaptive,intelligentsystem
is that of real-timecomputing. It is recogmzed that nents and their interactionsbecomespara-
many of the problemsnowbeingexploredinthis area mount, as the behavior of the simulationis
have their parallels in biologicalorganisms,and many the basis for developing strategiesto cope
o! the performanceissuesfacing artificial neural net- with real systems. This pointsto whatmay
works mayfindresolutionin the methodologyof real- be a major flaw in current software simula-
time computing, tion and modeling philosophy, as any

change requiresextensivereprogramming
"Research performedat Oak Ridge National Labera- of major partsof the entiresimulation.Thus,
tory, operatea by Martin Marietta Energy Systems, the predictive power of a simulationto be
Inc., for the U.S. Departmentof Energy under Con- used for the design of a complex system is
tract No. DE-AC05-84OR21400. easilycompromised.
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Incompleteness of information concerning Simulation & Modeling
the real, physical systems being simulated
imposes another intolerable burden on the For problems of sufficient complexity, a step-
simulations and support teams. In addition by-step s_mulat_on _s the most efficient
to the reliance demanded from implemen- means of obtaining predictions of system
tation hardware (sensors, communications, behavior. Wolfram 1 has argued that the
effectors, and processors), we are demand- behavior of certain systems may be ef-
ing that programmers perform flawlessly fectively found only by an explicit, step-by-
under extreme stress of time constraints and step simulation, and he considers such
imperfect knowledge. This is clearly unac- systems to be "computationally irreducible."
ceptable, as anyone who has ever at- Wolfram's argument amounts to showing a
tempted to write, debug, and run even the contradiction between the assumptions of a
simplest program can attest, universal computer for such calculations

and the existence of an algorithmic shortcut
This paper results from a search for a for the simulation. Physics and engineering
methodology to attack these very real issues are concerned primarily with the comnu-
of hardware and software complexity, relia- tationally reducible, while most biological
bility, and dynamic variability; and to show systems are computationally irreducible.
how software systems might become self- For example, "the development of an organ-
designing, overcoming both the severe con- ism from its genetic code" may well belong
straints noted above and providing the con- to the latter class. 1 Wolfram goes on to
fidence essential to deployment by ensuring suggest that "the only way to find out the
reliable and correct functioning in a chang- overall characteristics of the organism from
ing environment. The ideas presented be- its genetic code may be to grow it explicitly.
low are still in their infancy, but they have This would make large-scale computer-
been partially tested with encouraging re- aided design of biological organisms, or
suits. The main research effort is to deter- 'biological engineering,' effectively impossi-
mine which principles to abstract from na- ble: only explicit search methods analogous
ture, the extent of abstraction necessary, to Darwinian evolution could be used." 1
and the details required for creating intelli-
gent machines; for it is only through adap- Given the dynamic nature of a complex,
tive, intelligent systems that the limitations real-time control problem, the phrase "bio-
noted above can be overcome, logical organism" may be replaced with

"software" and "biological engineering" with
The problems of modeling and simulation "software engineering," extending the range
are discussed first, and a new principle of of applicability of the previous sentence.
software engineering is proposed. The Wolfram's suggestion then becomes a new
question of whether a complex system can principle of software engineering for truly
be simulated is raised. Examination of is- complex problems. It is this principle that we
sues leads to a proposal for creating syn- wish to explore along with neural networks
thetic organisms to solve certain complex and adaptive systems.
problems. Two network models are pre-
sented as a vehicle for implementing a self- Complex Systems: Where
designing, complex system. Results of the Simulations Fail
two evolutionary programs based on these Why are we concerned with biology and
networks are discussed, and a number of problems of computational irreducibility?
possible extensions to the methods are Artificial neural networks are well-under-
given, stood computational structures firmly rooted

in the mathematics of systems of first-order
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differential equations, and their proponents complex systems may be examined by con-
claim that many pressing problems will yield sidering the well-known Church-Turing
to the new paradigm of computational neu- Thesis, which asserts, in essence, that any
roscience. On the other hand, a biological material process can be simulated. That is,
system is one that lives in and has been op- the difference between actual points in a
timized for a certain dynamic ecosystem, state space of a real system and corre-
Such systems are complex and not well un- sponding calculated points in the space of
derstood from the simple-system [;,',,rspec- the simulated system can be made arbi-
tive. Evidence is accumulating from many trarily small by sufficient calculational effort.
quarters that systems combining information
management and real-time control o' com- There are two reasons-one practical, the
plicated hardware are likewise not simple, other fundamental--why any actual sim-
By the very nature of an algorithm, algorith- ulation will fail when asked to perform be-
mic methodologies developed to cope with yond strict design limits. The practical rea-
simple systems will most assuredly fail when son has been discussed above as due to
applied to these complex problems. Indeed, imperfect knowledge of the reality being
it is already evident that expert systems simulated; the second, more fundamental
(deterministic decision trees) become brittle reason, is based on Rosen's discussion of
whe_ the application domain is slightly al- complex systems. GSdel3 has shown that
tered, as does any algorithmic structure the Church-Turing Thesis fails for arithmetic.
when used outside its range of applicability. Thus, for example, it is not possible to en-
Note that the ad hoc addition of "fuzzy rea- code the whole of arithmetic into input
soning" by adding Bayesian logic or fuzzy strings for a Turing machine in such a way
sets does not cure this problem: once the that every truth of arithmetic is provable as a
ranges of variation are specified, the system theorem. Rosen uses this fact as a point of
is still essentially deterministic. Although departure to discuss differential equations
simulation may well be a practical way to as universal simulators. 4 He then goes on
study certain problems, it is too much to to show that "general vector field[s] cannot
hope that the limitations imposed by brittle be described to a Turing machine, ... [and]
programs and inadequate knowledge can since they cannot be encoded, they cannot
be overcome by a purposefully designed be simulated. It is precisely here that
simulation. Church's Thesis fails in analysis. In a pre-

cise sense, most orbits of such a general
To go beyond simulation to a synthetic or- vector field are not computable." 4
ganism that solves a complex, real-time
problem in an effective manner is seen as Rosen seems to be suggesting that since
the next logical development in computer algorithms (computer programs) can indeed
science. A simple system, by definition, is compute any computable function, and
one allowing separation between states and since behaviors of certain complex systems
dynamical laws, i.e., the intrinsic nature of are not computable by not possessing a
the system and its response to external complete syntactic description, there can be
effects.2 The author of this view of physical "no independent, inherent distinction be-
systems, Robert Rosen, suggests that "any tween hardware and software ''4 as the Tur-
system for which such a description cannot ing machine demands. Simulations can at
be provided ... [is] complex. Thus, in a corn- best repeat what "organisms have already
plex system, the causal categories become done; not the things they will do. "4 A real,
intertwined, in such a way that no dualistic parallel, asynchronous neural network
language of states plus dynamical laws can model is therefore necessary to emulate
completely describe it. "2 Computability of non-computable functions--the orbits of the
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general vector field. Thus, we must pro- large) set of (possib!y virtual) programs can
gress from the neural network simulations of form a genetic poo!, allowing mutations and
today to actual neural network systems of crossover to bring about the evolution of a
sufficient generality and power to mirror real successful program. This, then, is the thrust
neural activity at some level of abstraction of this work: to set up conditions in which an
such that they become actual synthetic intelligent system may create itself through
organisms that learn to cope with the evolution.
problems we need to solve. Only then will
we have achieved our goal of creating ma- Role of the Environment
chines with enough intelligence (or any in- The approved software-engineering proce-
telligence at all, for that matter) to cope ade- dure for writing a program is to start with a
quately with the types of problems consid- set of specifications that describe the de-
ered here. sired results. Another way of viewing this

process is to suppose we are constructing a
function (the algorithm) that maps from a

A Synthetic Intelligent System subset _f internal machine states, indicated
by the statements of the program, onto a

To create a system exhibiting the ability to subset of the possible actions that a
deal successfully with a complex and machine can effect in the external wor!d.
changing environment, a biological meta- The subset of this range of actions is
phor of an ecosystem inhabited by po- precisely those results specified in the top-
tentially intelligent agents is employed. The level design stages (if all has gone cor-
ecosystem may be changing on a continual rectly). The programmer's job is to select
and slow basis, as all natural systems do. A the most appropriatesubset in the domain of
group of similar organisms presently adap- the mapping (the set of all possible machine
ted to the ecosystem is considered to be a states or statements in the programming
species. It is this species that adapts to the language) that best map onto the range.
changing environment on a genetic time
scale when changes are outside a certain The method proposed here turns this pro-
optimality range for the present members of cess around and dynamically closes the
that species. The individual members of the loop between high-level specifications and
species =dapt to changing conditions on a program statements. It is this closure that is
time scale determined by plasticity of the or- usually neglected once the initial design
ganism; this plastic period may last for the specifications have been made. This ne-
lifetime of the individual or merely during an glect is ultimately responsible for the brittle
infant and juvenile period. The important software systems that we are so reluctant to
distinction is that the genetic time scale for allow to control complex machinery. Even a
change is much longer than the individual conscientious effort to close this loop will not
time scale. If changes occur too rat._dly for solve _he problem for those systems re-
any given individual to adapt, but not so quired to function in open environments--
severely as to be out of range of the avail- the Iocp needs continuous and dynamic
able genetic pool, then a given individual closure even as the environment changes.
may fail, but the species as a whole will
adapt. If changes occur too rapidly over too If the domain of the function (algorithm, pro-
extreme a range, the species becomes ex- gram) is widened to a much larger virtual
tinct, space of possible mappings, the task then

becomes one of evaluating the behavior of a
Reliance on a single program or set of pro- given program instance in its range. Eval-
grams will eventually prove fatal (even if uation is generally a much simpler algorithm
completely error free), whereas a (possibly
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and may be thought of as the inverse map- United States? How, then, can we prove
ping from the range of possible actions onto that a given intelligent being is going tc
the domain of virtual programs. Of course, a perform correctly? The answer is that the
sufficiently generalized representative of the question is ill-conceived; it is a question
virtual program space must be created borrowed from one domain and forced onto
initially for this method to work. How this another. The correct question is: Can we
might be accomplished is discussed below, reasonably assume that the job will be done

correctly by a certain individual? The only
The environment is an essential part of the conceivable answer is one involving esti-
ecosystem we wish to control. A specific mates and limits based on the experience of
ecosystem may consist of sensors, data- the evaluator and the candidate. The main
bases, computing engines, available soft- point is that when relying on provably cor-
ware libraries, space platforms, olfensive rect algorithms for complex, real-world situ-
and defensive weaponry, the immune sys- ations, failure is inevitable because, sooner
tem and invading organisms. The group of or later, the environment will change in an
functional organisms in an ecosystem act unexpected manner. With an adaptive,
upon and react to the environment; they are intelligent system, a provably correct answer
in fact inseparable from the ecosystem, may never become available in spite of our
which is a nonlinear dynamic system of in- best computer science departments. On the
teracting parts, other hand, total failure is not inevitable--

the adaptive, intelligent system will quite
The programmer/designer becomes a policy probably muddle through to victory one way
maker by providing the system with a or another. Thus there is a kind of comple-
"fitness" function that evaluates success in mentarity here--a too-restrictive policy
the environment and thus closes a loop that measure that guarantees the existence of a
is normally recognized only at the system correctness proof will result in brittle pro-
specification level in current software engi- grams, while a more liberal policy will deny
neering practice. All interaction between the a such a proof but allow intelligent and
designer and the system is through this adaptive programs to evolve.
high-level policy algorithm, which monitors
overall behavior, guiding the system to a An Optimized Retina
region of local optimal functionality. Set too If we consider a retina to be a filter for corn-
tight a specification, and the ensuing system plex spatial patterns that extracts certain
loses adaptability that may be essential at types of information (whether in the visible
some future time (e.g., when an unexpected spectrum or not is immaterial), then a gen-
terrain is encountered by an exploratory eralized retina is a necessary part of any
vehicle). Too loose a specification, and the entity required to function in an environment
ensuing system will behave other than that possess objects crucial to the entity's
desired, and may fail by default. The key success. Pattern recognition is only one of
point is that the closure between function the functions such a device must possess.
and specification in a self-designing system Thus we look to the role of a retina as
is a continuous process, fundamental to machine perception.

The question of reliability assurances in the Again, looking to natural systems for guid-
form of proofs of correctness will surely arise ance, a retina may be specifically optimized
in the course of presenting this new (but to recognize certain features. Frog retinas
very old) paradigm. For intelligent systems, responding strongly to nearby moving in-
such proofs are not only impossible, they sects, migrating birds orienting their routes
are not even applicable: can a proof of cor- via constellations, and babies responding to
rectness be found for the President of the
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abstract human faces all come to mind as 23, or eight, outputs of the feature detector,
genetically designed recognition systems, each of which may correspond to a feature
Hubel5 has shown that the human retina is of one or more categories that are learned
also well designed for sensitivity to edges, by the network during a training phase.
orientation, and motion in the field of view. Both learning and recall involve direct
But such generality may not be necessary in access from input cells to feature detectors
certain applications such as identification of to the summing category nodesmno expen-
specific objects in a restricted environment, sive relaxation process to minimum energy

states 8 is necessary, nor is backpropaga-
A retina was constructed from a neural net- tion 9 of errors during the learning process
work based on early work in pattern recog- required--there are no graded errors in a
nition by Bledsoe and Browning 6 and a later Boolean system. Due to the statistical na-
elaboration by Uhr. 7 The standard n-tuple ture of the connectivity and the requirement
algorithm6,7 was recast as a feed-forward that reasonable samples of each category
neural network consisting of randomly con- be presented during training, the network is
nected feature detect_,rs. Each feature de- both fast and reasonably immune to noise---
tector has n inputs from n different retina two desirable features for real-time, real-
cells (the simulated photoreceptors). In world applications.
Figure 1, n is chosen to be 3, so there are

Retina
Category

Cells Nodes

Feature

Detector

Figure 1. The feature-detector retina model is a feed-fonNard network activating category nodes.
Activity in the retina cells is grouped into features by the m feature detectors, where m = N/n, N is
the number of retina cells, and n is the order of the n-tuple. Each feature detector has a maximum

of 2n output lines connected to category nodes during training, These lines activate category
nodes during recognition. Category nodes are added to the network as needed.
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Both the connectivity of the network and the does not make the simplifying assumption of
contents of the memory may be taken as an average, differentiable frequency func-
genetic specifications. In an experiment de- tion, v(t), for the neuron's output; instead, it
scribed below, only the memory cells are simulates each axonal spike separately.
subiect to mutation. An alternate approach
involves an evolution of feature detectors for The model, as implemented, consists of a
particular sets of patterns by mutation of the few hundred frequency-responsive neurons
connectivity between the input cells and the or nodes. Each node has an arbitrarily cho-
feature-detector nodes. In this way, invari- sen number of inputs from other neurons
ants of the set of patterns will be encoded and, on the average, a like number of out-
into the connectivity of the network. The puts simulating the distribution of axonal
adaptability of this type of network takes spikes. The average connectivity is pre-
place on the evolutionary time scale--much dominantly from a row of input nodes
longer than the plasticity time constants of through several rows of internodes, which
the adaptive brain to be considered next. are not necessarily "hidden,"14 to a row of

output nodes. There is a high probability of
An Adaptive Brain connectionsin the forwarddirection(inputto
Whilewe canconceiveof a brain withoutits output) and a low probabilityin the lateral
emergent property of intelligence (indeed, and reverse directions. The distribution
examplesabound), the converse of intelli- functionis a Rayleigh functionmodifiedby
gence without a central nervous system an elliptical angular distributionwith the
(CNS) is much more difficult to imagine, majoraxis aligned along the forward-back-
The CNS used in the presentwork follows warddirection.
closely a model originally developed by
Browning lo for the Sandia Corporation. "Synapses"are formed at the junctionof the
Browningchose a system modeling those inputof one node to the outputof another
biologicalneuralnetworksthat make use of and are modeled by a pointer associated
frequency encoding of information trans- withan input node that refers to a memory
mitted by nerve impulses.11 It is unclear location associated with an output node.
whetherfrequency-codedinformationflow in The synapticefficacyof transmittingan ax-
the brain is fundamentalto brain operation onai spike through a junctionis analogous
or whetherit is merelya convenientsolution to the "weight"found in manyartificialneural
to the problemof communicationin a noisy network models.TM This weight is mod-
environmentbetween low-reliabilitycompo- ifiable, and the modificationalgorit;'dmmay
nents. However,recentwork indicatesthat be alteredto investigatevariousthP.oriesof
information is coded in the actual axon learning and memory. To date, a simple
pulsesand is indeedan importantmeans of Hebbianalgorithm has been used, as well
informationprocessing,at least in certain as a frequency-basedversionof the BCM
areas of the brain.12 Approximate coinci- synapticmodification.15 Other learningthe-
dence of informationpacketstraversingthe ories under investigationare the drive-rein-
networkis a stringentrequirementimposed forcement model,16 and the dual-synaptic
by a frequency-coded network and may populationmodel.17 Detailed comparisons
underlie the discriminationcapabilities of of these variousmodelsof learningare not
the CNS. The degree of abstractionallow- availableat this time, althougheach of the
able in a simulatedCNS is an open ques- algorithmsproducesreasonablysatisfactory
tion---can we talk about frequency as a results in that the system of neuronsand
functionof time as done by many research- synapses undergoes self-organizationre-
ers13 or must the actual axonal spikes be latedto the environmentimposed.
simulated individually? The present work
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& MuscleCells & MuscleCells
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Left Leg Right Leg

Figure2. A syntheticorganismis constructedfroman adaptive,frequency-codedneuralnetwork
havingsensorsand effectorsfor interactingwith the environment.The organismis presented
hereas an insect,10uttheparadigmisnotlimitedtoa particularclassof phenotypes.

A means ofinteractingwiththeenvironment successful"species."Theseextensionsand
was addedintheformofsimulatedsensors variationsare thegoaloffutureresearch
(vision,taste,and touch)and effectors intoelectronic(and eventually,electro-
(groupsofmusclecells).The resultingsyn- mechanical)lifeforms.
theticorganismisshown inFigure2. De-
pendingon the sensorsand effectorsgiven Evolution and Self-Design
such an organismand the environment in
whichit is requiredto function,the designer In a situationof sufficientcomplexity(asdis-
may demand an_hing from an artificialrat cussedabove) where proofsof correctness
for classroom experimentsin animal psy- are unattainable,the constructionof infalli-
chologyto an autonomousvehicle required ble systemsis impossiblewithoutan omni-
to explorethe Martiansurface. The biolog- scientprogrammer. DarwinTMhas givenus
ical basis of syntheticintelligenceis versa- a modelfor the creationof optimalsystems
tile enough to produce a wide variety of in artificial universes (independent of its
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correctness in the real universe). The omni- handle complex, biological-like problems,
scient programmer, even if possible, is no and it will lead to a revolution in the science
longer needed for the creation ef complex of complex systems. Over the years, a few
hardware and so,ware systems when the individuals have become interested in these
principles of evolution are employed--a ideas. One of the early investigators was W.
fallible program can improve its own be- W. Bledsoe 19, who examined some of the
havior. Thus, we are on the verge of estab- possibilities and problems associated with
tishing _he necessary conditions whereby genetic models in computer science.
electronic life can arise and evolve in the Fedanzo 20 gave a more recent admonition
compute_, and optimize its behavior in envi- to follow Darwinian precepts in _mblems
ronments of our choosing guided by a policy concerning data base optimizat cn
of our choice. This _san extremely powerful
paradigm for the design of systems to

Memory Matrix
Random

Address LeftL RightL
Retina ReceptorPairs o oo o o

I _p,0:1 3 - 10 0 01 0 0
O 2 I _ o ,o o ,3 r -_,:_2 oo o;, o o
e s s _2:6 + o, .............
o o o_ ,, ,oo,o, o° o°4:'/ 3 10 4 10 0 1

4 11 0 0

Figure3. Aclassicaln-tuplepatternmarcherisshownforn= 2 anda 3 X 3 inputarray.A typical
patternis shownin the arrayon theleft. Thetable in the middleshowsa possiblearrangemertof
the five possible(mostly)exclusive,randomlychosenpairsof retinacells,andthe formationof
subaddressesis indicated.Thetableon the right showsthe memorymatrixnecessaryto store
twocategories,one percolumn. The pair labeled0 consistsof the orderedretinacell pair 1,3.
Cell 1 has a pixel turned on, cell 3 does not; the correspondingsubaddressis therefore 10
(binary)or 2. Thusthe memorymatrixhasan entry (iftrained)ataddress0, subaddress2 in the
rightcolumn,correspondingto the right-facingL-pattern.

The usual approach to adaptive systems tion, the time scale is much longer, extend-
can be made into a Darwinian approach to ing over many individual organisms (pro-
self-designing systems by carefully sepa- grams) interacting with their environment
rating design and performance specifica- and resulting in the self-organization of the
tions from adaptive structures (synaptic genome itself.21
weights, polynomial coefficients, etc.) be-
longing to the individual organism or, in this Positive and Negative Selection
case, the executing computer program. One
of the most noticeable differences between There are a wide variety of selection strate-
an adaptive genome and an adaptive gies to choose from when considering opti-
system concerns time scales: adaptation in mization based on Darwinian principles,
theusualsense occurson a shorttimescale The main ideaistointroducevariationsand

and withina certainprogram thatisself- demand thatreproductivesuccess depend
organizinginresponse tothe environment on fitness(inDarwiniantheory,thetwo con-
orproblem. Inthe case ofgenome evolu- ceptsare synonymous). Here,we consider
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the effects of the two general stragegies of complementing cell contents. The algorithm
positive and negative selection on fitness, followed involves a mutation in _' single, ar-
Both of these strategies are amenable to bitrarily chosen memory cell and measuring
simulation in a relatively simple system. The of the success of the retina in recognizing
principles discussed below are well known the set of L's, both normal and reflected in
to evolutiorary biologists (e.g., Mayr 22 and the vertical. Inspection of the figure shows
Kimura23), and to some animal breeders, that there are 9 such L's possible in each
but seem relatively unknown to computer orientation on a 3 X 3 grid (we are not con-
sciemists, sidering reflections about the horizontal).

The scores of each of the 18 L's are com-

Browning 24 suggested a simple experiment puted by counting 1 for each cell addressed
done with a data-structure version of the by a particular L pattern (the L shown in

pattern-recognition system described above. Figure 3 would score 0 for the "Left" cate-
The pattern memory is a set of binary cells gory and 2 for the "Right" category for a total
addressed by patterns in the retina (see score of 2). The score then becomes the
Figure 3). Mutations are made by logically "fitness" of that particular mutation.

! O0

Negs;;ve Selection

4_
u Positive Selection
t,
t.
0

W

, Cross-Over Point

5C
0 Number of Mutations GO0

Figure4. Results of a simple artificialgenetic experiment on the memory matrix shown in Figure 2.
In the 20 memory cells, 600 mutations were made for each selection strategy (see text). The
strategy corresponding to negative selection clearly outperforms the positive selection case.

The experiment was run for two different Sex and Genetic Algorithms
selection strategies, positive and negative. Employing negative selection results in ira-
"Positive" is defined as: Accept a mutation if provements in the optimization algorithm
it produced a higher score, otherwise reject chosen. Additional acceleration of the evo-
it. "Negative" is defined as: Reject a muta- lutionary process is possible in a sexual
tion only if it produced a lower score. Thus species where there is an opportunity for in-
we are selecting against failure, not for suc- dividuals to pool complementary portions of
cess. As Figure 4 shows, the difference is genetic material as shown by Ulam and
dramatic. Po=itive selection starts with a Schrandt. 25 Application of the genetic al-
faster slope initially, but saturates quite early gorithms as pioneered by Holland, 26 es-
(below about 250 mutations for this 20-cell pecially the use of cross-over methods,27
system). Negative selection, however, has been shown to result in accelerated

quickly overtakes the positive, and is still optimization for these classifier systems.
showing improvement at the 600-mutation There is every reason to suppose that
point.
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variants of these methods, involving a duced mutations discovered in C. Elegans
careful separation between the "phenotype" (a microscopic, 850-celled worm having ap-
and the "genotype," woulc dramatically ac- proximately 300 neurons) causes this very
celerate the process if applied to a collection behavior. 29 Several unc (for uncoordi-
of individuals forming a gene pool. nated) mutations affect the ability of the

worm to move forward and backward. In
particular, unc-4 prohibits backward motion

Results & Future Directions entirely, while the unc-7 mutation causes
predominantlybackwardmotion.30

One aspect of intelligent behavior is the
ability to solve a problem in a surprising As an exercisein understandinga complex
fashion. The systemdescribedabove has system,a preliminaryanalysiswas made of
generated such a surprising solutionto a the parameterfile (definingthe structureand
presumabl/ simple problem. The problem behaviorof the simulatedorganism)before
posedto the systemwas to optimizethe be- andafter the evolutionaryepisode. The new
haviorof the syntheticorganismby avoiding speciesdevelopedsolr,ewhereprior to 456
the boundaries of the environment yet generationsinvolving1537 mutatedindivid-
keeping in motionto explore and interact uals. It was assumod that a parameter
with that environment. A simple fitness residing in a gioup responsible for the
function set the policy by evaluating each dynamics of the muscle motion would be
time step of the synchronoussystem. The identifiableas responsiblefor the reverse
systemwas left to evolveon its own. The locomotion(indeed, there is a parameter
expectationwas that the variousparameters specifyingthe degree of asymmetry i,1 the
determiningthe tactile sensitivitywould de- extensor-to-flexorcontractions). This hope
velop to the point where touching the was dashedwhen the standarddeviationof
boundarywouldinitiatea sequenceof net- the percentagechange of the parametersin
work node firingseffectivelydemandingre- the muscle-dynamicsgroupwasfoundto be
treat of the organismfrom the walls. Since not significantlydiffGrentfrom that of ._ny
the high frequency felt at the boundaries other of the functionalgroups. Indeed,the
naturallyprovesdisruptiveto a frequency- asymmetryparameterchangedin the direc-
coded network,as shown by previously.28it tion of increasedforward impetusby about
was naturalto assumethatthis inherentca- 10% rather than in the directionof reverse
pabilitywould be optimized. The surprise locomotion. The nu,nber of random trials
was that thisdid not happen. Instead, the necessaryto alter the asymmetryparameter
syntheticcreatureevolved---after more than sufficientlyto cause predominantly back-
four hundred generations--into a new ward motionis approximately1005nmuch
species whose locomotion was predomi- largerthan the <1537 trialsactuallyneeded.
nantly backward. The new organisms Thus,the selectionistmethodof optimization
walkedbackwardin a very efficientmanner, is far moreeffectivethan a randommethod
occasionallyturning around to sense ob- wouldbe.
jects in the environment. There was no
touchsensoron the rear, so posteriorcolli- We have 3iven an examolp,of a system
sionswiththe wallshad no effect on the fit- whosebeh:wior is clearlyknown,butwhose
ness functionand could not disrupt the ac- internalcausesare notyet understood.The
tivityof the network, situationis analogousto one's pet dog: you

ca_;never,.,nderstandan organismas corn-
Thus, a groupof parameters,or a "gene"of plexas a dog, but you surecan make it sit
the system,alteredto solve the problemin whenever you wish (almost). Dogs have
an efficient,surprising,and biologic,ally rea- proventheir reliabilityin complex,difficult,
sonable manner. Indeed, one of the in-
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and demanding situations throughout hi, high rate of mutation of the AIDS virus. For
tory, yet they are neither understandable (in NASA, there are likewise obvious applica-
the reductionist sense)nor provabsy correct, tions: a planetary exploration vehicle _ill

probably meet with failure due to unantici-
The Future pated environmental effects. Any means of
Accgss to faster processors operating in turning such an eventual failure into success
parallel configurations will allow a number should be welcome.
of additional techniques, all taken from biol-
ogy, to be applied to the creation of selt-de-
signing systems. Sex, in particular, was Acknowledgments
mentioned above. Other means of acceler-
ating evolution involve interaction between Thisworkdependedonsupportprovidedpartlybythe
individuals of the s_,.meor different species. InstrumentationandControlsDivision,partlybytheEnergyDivision,bothof OakRidgeNationalLabora-
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result is either the extinction of both or two catedsourceof ideasand perceptiveand thought-
very fast animals. Similarly, direct competi- provokingcommentssince 1986. John PeersofNovix,Inc.hasprovidedinvaluablemoralandvaluable
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